有限元分析是我们在设计和研发中必备的工具。我们是设计和生产汽车零配件的公司,在全球范围内为通用,福特,克莱斯乐,尼桑,本田等汽车配套排档器,刹车踏板机构,油门踏板机构,可调式电子油门踏板机构等。对每个新产品,我们都利用有限元分析的技术,在新产品模具制造前,就进行模拟试验过程,对产品进行评判和改进,这样就可以大大减少模具费用,缩短开发周期,降低成本。
有限元分析不仅能帮助新产品的开发和设计,我们还用有限元模拟仿真实际的生产加工过程,解决生产中出现的问题,提供对加工模具的要求信息等。我们为尼桑提供的刹车踏板生产工艺不同于传统的冲压生产工艺,是对钢片剪切折弯成型,见图1。
nload="javascript:if(>740)=740" align=center border=0>
图1 加工踏板的机床
在众多的有限元分析软件中,ANSYS享有很好的声誉。特别是ANSYS的非线性功能是最完善和强大的。因此我们选用了ANSYS。
挑战:
刹车踏板是由钢片冲切折弯成型。钢片在冲剪后,利用钢材的塑性性能挤压折弯成踏板所需的最终几何形状。显然模具的形状影响踏板的几何形状,利用模具如何折弯,模具的运动角度也影响踏板的几何形状。 这就存在如何设计模具的形状和如何折弯才能得到所需要的踏板的精确几何形状。此外,如果钢片的几何形状不规范,生产出的踏板形状如何?
解决方案:
我们利用ANSYS建立有限元模型模拟钢片冲剪后挤压折弯的整个加工过程。这是一个非线性过程,包括材料非线性,大变形和接触。
模型包括钢片,硬折弯固定弯头,硬折弯动弯头和折弯臂 ,软折弯固定弯头和动弯头,见图2和图3。钢片为3维立体单元,固定弯头和动弯头与钢片定义接触。硬折弯动弯头的折弯臂为刚性梁,动弯头可以绕梁自由转动模拟实际的动弯头运动。
nload="javascript:if(>740)=740" align=center border=0>
图2 折弯钢片和弯头。
nload="javascript:if(>740)=740" align=center border=0>
图3 有限元模型。
该模拟分析中包括8个阶段:
1.硬折弯固定弯头和动弯头运动到正确位置;
2.硬折弯固定弯头不动,动弯头按要求转动所需的角度。在此过程中,弯头与冲切后的钢片接触使其变形,动弯头可以绕折弯臂自由转动;
3.硬动弯头回到初始位置。
4.硬折弯固定弯头和动弯头一起回到原位置;
5.软折弯固定弯头和动弯头运动到正确位置;
6.软折弯固定弯头不动,动弯头按要求转动所需的角度。在此过程中,弯头与冲切后的钢片接触使其变形,动弯头可以绕折弯臂自由转动;
7.软动弯头回到初始位置;
8.软折弯固定弯头和动弯头一起回到原位置;
踏板材料是SAE950X钢。因为踏板的几何形状是靠材料的塑性变形得到的,因此,材料模型为非线性。
我们需要钢片在折弯加工后的最终三维几何模型,利用APDL语言编辑一个宏命令, 该宏命令用钢片 变形后的节点位置产生变形后的钢片几何模型。
效益
精确的踏板最后几何形状不容易得到,踏板的最后形状由折弯固定弯头和动弯头的形状等决定,没有有限元分析,只能通过多次试验,验证和误差这样一个昂贵的过程,其中包括需要多次修改模具,试加工,延长了产品的设计和生产时间,提高了成本。
使用ANSYS模拟实际踏板的生产加工过程, 可以事先验证模具的设计,如固定弯头和动弯头的形状,事先验证动弯头所需转动的角度。通过该分析,硬折弯所需的力矩和软折弯所需的力矩都可以得到,这样我们就可以知道加工机床的受力,见图4和图5。
nload="javascript:if(>740)=740" align=center border=0>
图4 硬折弯扭矩和折弯臂转角曲线。
nload="javascript:if(>740)=740" align=center border=0>
图5 软折弯扭矩和折弯臂转角曲线。
通过该分析还可以发现潜在的问题,如硬折弯的稳定性,踏板最后几何形状对钢片边缘形状的敏感性,模具的磨损,踏板的变形历程, 踏板的断裂等。
在众多有限元软件中,ANSYS的非线性功能是最强的。它可以很好的模拟实际生活中的非线性问题,因此对设计和生产有指导意义,减少成本,加快产品开发周期。